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Fig. 1. The same four basic shapes, or eigenworms, capture both wild-type
and mutant postures. ( A) Worms crawling freely on a bacterial lawn on an
agar pad can be segmented and accurately skeletonized (outline and mid-
line; color indicates curvature). The green dot indicates the worm ’'s head,
and the red dot indicates the vulval side. ( B) The four wild-type eigenworms
are shown as thick red lines. Eigenworms derived from 307 mutant strains
(gray lines) are similar to the wild type. (  C) By projecting worm shapes onto
the four-dimensional basis formed by the eigenworms, a sequence of be-
havior can be compactly represented as a four-channel time series. The
images above the time series show the worm posture at the times indicated

by the red vertical lines. The blue dots indicate the worm s head. (D) The
rmsd between the raw worm shape from the skeletonization and the worm
shape reconstructed using just the four eigenworms for 7,008 individuals. As
more eigenworms (1 —4) are used, the timproves. The rmsd distribution for
the wild-type data alone is shown in purple on the left. The t to all of the
mutant data are comparable, as can be seen more clearly in the  Inset where
the distributions have been rescaled.

escape them completely: 86 + 6% of the variance of unc-
2(gk366) shapes (the worst-fit mutant in terms of rmsd) is still
captured by the wild-type eigenworms.

Having established a compact and common basis for repre-
senting worm shapes, we next turn to the problem of automatic
behavior detection. To avoid subjectivity, we used what might be
considered a minimal definition of stereotyped behavior and
simply searched for the most repetitive subsequence of a given
length in a movie (Fig. 2A); in the amplitude representation, this
is equivalent to time series motif-finding (29), and so we call
these subsequences behavioral motifs. We used the minimum
rmsd to define the best match and used either a brute force
search or the MK algorithm (30) to find exact motifs.

We constructed a dictionary of 2,223 behavioral motifs by
searching for motifs in movies sampled across all mutant strains
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(SI Methods). Each motif is a behavior performed by a single
individual at two different times. The dictionary contains a wide
range of behaviors, including short motifs essentially consisting
a single posture (Fig. 2B, motifs 1-3) as well as long and
sometimes seemingly irregular behaviors that are nonetheless
almost perfectly repeated (Fig. 2B, motif 14). Bouts of forward
locomotion are relatively common but can have widely different
frequencies and amplitudes (Fig. 2B, motifs 11-13). Finally,
some motifs contain subtle behaviors that may not be picked in
a manual inspection for stereotyped behaviors such as motif 9,
which contains a pause interrupted by a small head bend.

We next used the motif dictionary to construct a quantitative
phenotypic fingerprint for each recording. The fingerprint for
each individual is a vector of distances between that worm'’s be-
havior and each dictionary element (illustrated for three strains
and 14 motifs in Fig. 2C). The distance between the fingerprints
averaged over a strain provides a quantitative measure of their
phenotypic dissimilarity. More specifically, for each element in
the motif dictionary, we identified the best matching subsequence
in the movie of interest and used the rmsd as the distance be-
tween a motif and a time series (31). To compare hundreds of
strains, we found the distance between all of the motifs in the
dictionary and each of the movies in the database. We then used
a minimum redundancy maximum relevance (mRMR) criterion
(32) to select 700 motifs for clustering. Reducing the number of
motifs saves computational time, but the method is robust to
exactly how features are selected: a random selection of 700
motifs also performs well. The results do not depend sensitively
on the number of motifs. Qualitatively similar results are found
using 300 motifs. Affinity propagation (33) was used to cluster
mutants into phenotypically related groups using inverse Maha-
lanobis distance between strains as the similarity measure. We
then resampled individuals from each group with replacement,
recalculated the distance, repeated the clustering 100 times, and
determined the frequency with which strains were in the same
cluster. We kept only the most frequent 10% of connections, and
illustrated these as edges in a phenotypic similarity network (Fig.
3; see Fig. S3 for a version with node labels).

The nodes in Fig. 3 are colored by phenotypic or molecular
class. For a complete list of the strains and their corresponding
class designation, see Dataset S1. There are four broad groups of
mutants in the network: (i) on the lower left there is a cluster
primarily of monoamine related genes (e.g., receptors, putative
monoamine transporters, and enzymes involved in monoamine
synthesis) and some transient receptor potential (TRP) ion
channels; (ii) on the lower right is a cluster of neuropeptides and
G protein-coupled receptors; (iii) on the upper left is a loosely
connected uncoordinated cluster; and (iv) on the upper right is a
cluster of strains with nearly normal locomotion, including sev-
eral mutant groups and the wild-type N2 strain itself. For the last
group, it is important to emphasize that some of the mutants in
the cluster with N2 are still significantly different from N2, as we
discuss in more detail below.

To assess the clustering outcome in more detail, we compared
the proximity of strains with predicted associations at increasing
scales: loss-of-function alleles of the same gene, mutations af-
fecting different genes but disrupting the same molecular com-
plex, and at the largest scale, genes affecting a common molecular
pathway. There were several loss-of-function deletion, nonsense,
or splice-site mutant alleles of the same gene in the network, and
these clustered significantly closer to each other than the network
average (gene pairs are indicated by dashed red lines in Fig. 3):
they were separated by an average of 1.6 edges, significantly less
than the average network distance of 3.7 (P = 6 x 107, Wilcoxon
rank-sum test). These genes, with the corresponding network
distances are egl-21(n476) and egl-21(n611) (one edge); ocr-4
(tm2173) and ocr-4(vs137) (two edges); trp-2(sy691) and trp-2
(gk298) (two edges); unc-10(md1117) and unc-10(e102) (two
edges); unc-89(e1460) and unc-89(st85) (one edge); and trpa-2
(0k3189), trpa-2(tm3085), and trpa-2(tm3092) (the 0k3189 allele
is two edges from the other alleles which are one edge from each
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Fig. 5. Maximally distinguishing behavioral motifs. For each of the indi-
cated comparisons (A-C) the two most-distinguishing behavioral motifs
from the dictionary are found using mMRMR. The plots on the left show the z-
normalized distance between the compared strains and the motif (mean
SE). The motif amplitudes and the corresponding worm postures are shown
in gray. The colored lines show the mean-matching motifs from each of the

compared strains. For example, acd-5(ok2657) matches the

rst motif in

more closely than N2 on average, and this is visible in the amplitude overlay.

Brown et al.

I+

other DEG/ENaC channels near each other in the same cluster
are still distinguishable using the same approach (Fig. S6). Given
that DEG/ENaC channels are known to form heteromeric com-
plexes (42), we arrive at the hypothesis that these channels share
a similar function and may even operate in the same channel
complex in some cells.

Phenotypic profiling using automatically extracted behavioral
motifs can reveal abnormal phenotypes in mutants that were not
apparent from manual observation. Furthermore, phenotypic
associations can sharpen hypotheses of gene function, especially
when combined with other information, such as sequence simi-
larity, and can therefore help guide functional experiments. Al-
though the discovery phase is unsupervised, the end result is still
an intuitive summary of a phenotype in terms of a small number
of short behaviors. Because the assumptions underlying behav-
ioral motif extraction are minimal, we expect our method to
apply generally to many model organisms. In particular, because
zebrafish larvae are of fixed length and generate body move-
ments in two dimensions, little modification would be required to
adapt the approach described here. Although a representation
based on skeleton angles would not be optimal for Drosophila
larvae, a representation based directly on outline curvature could
make Drosophila larva locomotion and in vitro cell motility
(43) amenable to unsupervised motif discovery as well. Motif-
derived phenotypes are related to functional classes but are
derived completely independently from other data; we therefore
expect them to provide complementary information that may
be usefully combined with proteomic and transcriptomic data in
the future.

Methods

Strains. All strains were maintained at 22 °C as previously described (44). A
complete strain list is included in Dataset S1.

Tracking. Single-worm tracking was performed as previously described (45,
46). Brie y, single worms were transferred to agar plates seeded with 20 L
of OP50 bacteria using a platinum wire and allowed to habituate for 30 min.
Then each worm was tracked for 15 min at 25 frames per second using one

of eight trackers consisting of a USB microscope mounted on a motorized
stage. The camera was moved beneath the crawling worm, which was kept
stationary to avoid mechanically stimulating the worm. Each tracker was
controlled by a computer running home-built software written in Java
(www.mrc-Imb.cam.ac.uk/wormtracker/ ).

Segmentation and Skeletonization. All analysis software described below was
written in MATLAB. Each movie frame was segmented using the Otsu
threshold (47), and the worm was taken to be the largest connected com-
ponent in the resulting image. The curvature of the outline of this con-
nected component was determined, and the two points of highest curvature
were taken to be the head and the tail. The skeleton was found by tracing
the midline of the outline between these two points. The skeleton was di-
vided into 49 equally spaced points, which were used to de  ne 48 tangent
angles. The mean of these angles was then subtracted.

Eigenworm Representation. Eigenworms were derived from at least 1 h of
pooled crawling data for each strain as previously described (24). The skeleton
angles in each frame were then projected onto the wild-type  —derived eigen-
worms, and these amplitudes were used for all further behavior analysis.

Motif Dictionary. Motifs were discovered as previously described T with the
following modi  cations. Motifs were discovered using distances across all
four eigenworm amplitudes simultaneously, ensuring an essentially one-to-
one correspondence between a time-series motif and a segment of worm
behavior. Furthermore, no normalization was performed on the candidate
subsequences to preserve the amplitude offsets and magnitudes that are
essential for maintaining the times-series behavior mapping. Nine different
length motifs from 1.6 to 32 s (40 -800 frames) were discovered in each of
1,542 movies (each 15 min long) sampled from all mutant strains, resulting in
an initial motif index with 13,878 entries. Motifs were discovered on data
downsampled by a factor of four. The 20% worst matching motifs of each
length were dropped, and from the remaining 80%, the 20% of each length
with the highest variance across all dimensions were kept, leaving 2,223
motifs in the pruned dictionary. Keeping high variance elements ensures
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